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Recently, deep transfer learning-based intelligent machine diagnosis has been well investigated, and the
source and the target domain are commonly assumed to share the same fault categories, which can be
called as the closed-set diagnosis transfer (CSDT). However, this assumption is hard to cover real engi-
neering scenarios because some unknown new fault may occur unexpectedly due to the uncertainty
and complexity of machinery components, which is called as the open-set diagnosis transfer (OSDT).
To solve this challenging but more realistic problem, a Theory-guided Progressive Transfer Learning
Network (TPTLN) is proposed in this paper. First, the upper bound of transfer learning model under
open-set setting is thoroughly analyzed, which provides a theoretical insight to guide the model opti-
mization. Second, a two-stage module is designed to carry out distracting unknown target samples
and attracting known samples through progressive learning, which could effectively promote inter-
class separability and intra-class compactness. The performance of proposed TPTLN is evaluated in two
OSDT cases, where the diagnosis knowledge is transferred across bearings and gearbox running under
different working conditions. Comparative results show that the proposed method achieves better
robustness and diagnostic performance under different degrees of domain shift and openness variance.
The source codes and links to the data can be found in the following GitHub repository: https://github.-

com/phoenixdyf/Theory-guided-Progressive-Transfer-LearningNetwork.
� 2023 Elsevier B.V. All rights reserved.
1. Introduction between the testing data and the training data. As a result, the well
Recent development of deep learning (DL) approaches has
greatly improved the performance of mechanical fault diagnosis
tasks [1,2], and the substantial prerequisite of the diagnosis accu-
racy and stability boost is usually based on two assumptions: 1.)
large amounts of labeled data are available, and 2) the training
dataset and testing dataset follow the same distribution [3]. Con-
sidering the practical applications of DL approaches in many indus-
trial scenarios, however, it is time-consuming and labor-intensive
to collect sufficient labeled data, especially the labeled fault data,
because the machines are always in normal condition with sched-
uled maintenance. Moreover, similar machines often work in dif-
ferent regimes, due to the specific task demands and working
environments, which leads to the distribution discrepancy
performed DL diagnosis models under laboratory settings would
degenerate greatly when encountering real-world situations.

The transfer learning (TL) has been demonstrated as a powerful
tool for helping deep learning to bridge the gap between perfor-
mance in the laboratory and in the real world because it allows
the knowledge obtained in one or more tasks to be reused to
another [4]. In the scenarios of mechanical fault diagnosis, different
working conditions and machine components can be regarded as
different domains, and the different fault types can be regarded
as different tasks. TL aims at transferring the diagnostic knowledge
from the source domain (where the diagnostic models can be fully
trained with the sufficient labeled data) to the target domain
(where the models are difficult to be trained due to the insufficient
labeled data and distribution discrepancy). Compared with the DL
approaches, the TL approaches have two significant advantages:

1) Relaxing the labeling setting: Transfer learning has contin-
uously relaxed the labeling constraints for the target tasks. It
started with a supervised setting, where the testing data in
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the target domain are fully labeled, followed by the semi-
supervised setting, where only part of labeled data in the
target domain are available, and finally converged at unsu-
pervised setting, where no labeled data could be used in
the target domain. The unsupervised transfer learning
approaches are expected to deal with the mechanical fault
diagnosis problemwhere the labeled data are hard to collect.

2) Covering the domain shift: Transfer learningbridges thegap
that there exist different probability distributions between
the source domain (data for training) and the target domain
(data for testing). It means that a new but related target task
could be addressed well through transferring learned knowl-
edge from the source domain. Transfer learning shows great
potential to extend the applications of existed DL diagnosis
model for mechanical fault diagnostic because it enables the
model to cover the difference of working conditions and even
the variance within machine component family type.

Generally, the TL-based fault diagnosis approaches could be
classified into three types: instance-based approaches [5,6],
model-based approaches [7,8] and feature-based approaches [9–
13]. Concretely, the goal of instance-based approaches is to pro-
mote the diagnostic knowledge transfer through singling out pos-
itive instances from the source domain and merging the source
data into the target data with the instance weighting strategies.
Model-based approaches explore which part of the source pre-
trained model could facilitate the target domain parameters learn-
ing and fine tune the rest components with target domain data.
Feature-based approaches construct the mapping function to con-
vert the raw data from source and target domain into a common
latent space and extract the domain-invariant features, which
mainly includes three strategies: reducing the domain shift with
discrepancy-based metrics, generating the domain confusion with
adversarial-based mechanism and improving the domain invari-
ance representation with reconstruction-based models.

One of the main assumptions of most machinery diagnosis
transfer learning methods is based on the closed-set condition,
which indicates that training and testing data should cover the
same machine health state. However, this closed-set diagnosis
transfer (CSDT) assumption is difficult to satisfy in real engineering
fields. Due to the huge economic cost and human labor of data col-
lection, it is often hard to collect sufficient labeled training data
with various machine health states, resulting in limited source
domain categories. In the testing phase, new unknown fault modes
absent in the source domain would occur, and the diagnosis model
would wrongly classify the emerging unknown fault type as
known fault type. Therefore, a more challenging and practical sce-
nario called as open-set diagnosis transfer (OSDT) is proposed [14].
The OSDT not only transfers the diagnosis knowledge from source
domain, but also detects the unknown faults absent in the source
domain to expand its diagnosis knowledge in target domain.

Fig. 1 shows the diagram of CSDT and OSDT, the main difference
is that OSDT aims at transferring diagnosis knowledge from class-
scarce source domain to class-rich target domain and constructing
a decision boundary of known and unknown samples. Therefore,
the OSDT problems could be solved from two aspects: 1) Learning
a decision boundary between known and unknown target samples
to achieve the inter-class level separability and 2) Matching the
distribution of source samples and target samples in the shared
label space to achieve intra-class level compactness.

However, some pending issues limit the development of OSDT
solutions:

1) Uncertain decision boundary: It is difficult to formulate a
certain decision bound to recognize the unknown and
known samples without information about the degree of
2

openness. Using a too tight decision bound would ignore
some unknown samples under a large degree of openness
while using too loose decision bound would include some
known samples under a small degree of openness.

2) Interactive negative transfer: The two objectives influence
each other during the model training negatively. In detail,
the known and unknown target samples would become con-
fused under large domain shifts, making it harder to learn an
accurate decision boundary. Subsequently, these misclassi-
fied samples, belonging to shared (private) space but recog-
nized as private (shared), would adversely influence the
distribution matching, which further mislead the decision
boundary learning.

To overcome the aforementioned challenges, a novel principle-
guided deep adversarial network is proposed to detect the emerg-
ing faults and reduce the domain discrepancy. The open-domain
detection loss and the invariant learning loss are optimized
through minimizing the theoretically derived error bound, which
could achieve inter-class level separability and intra-class level
compactness with theoretical guarantee. Moreover, a two-stage
progressively learning strategy is designed to suppress the interac-
tive negative transfer. Finally, the adversarial-based mechanism is
employed to endow the model with the capacity to learn discrim-
inative representations from imbalance data, which could perform
well generalization under different degrees of openness.

The overview of proposed Theory-guided Progressive Transfer
Learning Network (TPTLN) is illustrated in Fig. 2. As shown in
Fig. 2, in the distract stage, a flexible decision bound is adaptively
obtained to accurately discriminate target unknown samples, in
which the source risk and open set risk would be optimized itera-
tively to facilitate outlier data (inter-class) separability; and in the
attract stage, the domain-invariant features across the shared label
space of source and target domains will be learned to promote
intra-class compactness.

(a) An example of intial state under open set setting, inwhich the
source domain and target domain share several known fault classes
(triangles and squares marked in the figure), and the target domain
also contains the unknown fault classes not included in the source
domain(circles in the figure). (b) The situation after the distract
stage: Firstly the classification boundary of source known faults is
built to enable the TPTLN to achieve diagnosis. Secondly, a coarse-
to-fine decision boundary is constructed to distract the target sam-
ples of known classes and unknown classes. (c) The situation after
the attract stage. An adversarial distribution alignment strategy is
conducted to attract the samples of the source domain and target
domain in the shared space. (d) The situationafter progressive learn-
ing between distract and attract stages iteratively until to conver-
gence, in which the target samples of unknown classes would be
pushed away from shared space, and target samples of the known
classeswould be close to their sourcedomain corresponding classes.

The main contributions are summarized as follows:

1) A more realistic diagnosis transfer scenario for rotating
machines called as OSDT is explored, in which the target
domain not only contains shared label space with source
domain but also contains private label space (emerging
unknown fault types) not included in the source domain.

2) A progressive learning structure TPTLN is designed to exe-
cute the target samples dividing (distract stage) and domain
distribution aligning (attract stage) separately. The proposed
uncertainty calibration, adaptive openness estimation, and
weighted distribution modules are attached to the two-
stage learning process, which could better accommodate
under larger domain shifts and effectively avoid the problem
of interactive negative transfer within one model.



Fig. 1. Comparison diagram of CSDT and OSDT.

Fig. 2. An overview of proposed TPTLN approach for OSDT problem.
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3) The proposed TPTLN is designed with the guidance of theo-
retical bound analysis. Minimizing the source risk aims to
obtain a source classifier, optimizing the distribution dis-
crepancy is to learn domain invariant features, and the open
set risk is controlled with proposed calibrated similarity and
domain consensus score, providing an adaptive decision
boundary to detect the target unknown samples, which
accommodates different degrees of target data openness.

4) Various open set diagnosis transfer tasks under different
degrees of domain shifts and openness variance are designed
to verify the effectiveness of proposed model. Totally seven
representative models are selected as baseline and several
visualization methods are explored to illustrate the model
performance on improving diagnosis accuracy and enhanc-
ing transfer robustness.

The rest of this paper is organized as follows. In section 2,
related works are briefly discussed. In section 3, the preliminaries
are briefly described. In section 4, the method is introduced in
detail. In section 5, the experimental cases and comparative results
are analyzed. In section 6, the conclusions and future work are
presented.
2. Related works

2.1. Closed set diagnosis transfer

Benefiting from the superiority of transfer learning, various
CSDT methods have been proposed, and the related research are
presented as follows:

1) Instance-based approaches are typically based on instance
selection or instance weighting strategies. Song et al. pro-
posed a retraining strategy-based domain adaption network
(DAN-R), in which the pseudo-labels were generated to
annotate the unlabeled instances in the target domain and
the model was retrained with both training instances and
pseudo-labeled testing instances [5]. Zheng et al. proposed
an instance-based discriminative loss for rolling bearing
diagnosis under a more practical and challenging scenario,
in which only normal samples could be available in the data-
set of the target machine [6].

2) Model-based approaches aim at sharing the neural network
structures and parameters across different domains. Zhang
et al. proposed a parameter transfer model based on CNN
to diagnose motor bearings under different working condi-
tions [7]. Shao et al. proposed a pre-trained VGG-16 network
to extract lower-level features and successfully transferred
the fault diagnosis knowledge on both motor bearings and
gearboxes [8].

3) Feature-based approaches endow the diagnosis model the
ability to transfer knowledge by learning domain invariant
features. In the aspect of discrepancy-based metrics, Yang
et al. proposed a multi-layer MMD to optimize the CNN-
based diagnosis model, which transferred diagnosis knowl-
edge from laboratory-used bearings to the locomotive bear-
ings [9]. Jia et al. proposed a diverse feature aggregation
module to enhance feature extraction capability across large
domain gaps and the joint maximum mean discrepancy was
designed to diminish the distribution discrepancy [10]. In
the aspect of adversarial-based mechanism, Li et al.
employed the adversarial strategy to deal with the machine
fault diagnosis issue with imbalanced data [11]. Deng et al.
proposed a double-layer adversarial domain adaptation net-
work combined with attention mechanism to achieve diag-
4

nosis knowledge transfer across different machines [12]. In
the aspect of reconstruction-based models, Wen et al.
designed a deep transfer learning (DTL) to extract deep fea-
tures with an auto-encode model and employed maximum
mean discrepancy (MMD) as the metric to reduce domain
discrepancy [13].

The CSDT approaches including transfer diagnosis knowledge
across different working conditions, different sensor locations,
and different types of components focus on addressing the issue
of distribution matching, and they offer scope for extending the
diagnosis transfer application under open set scenario at the same
time.

2.2. Open set diagnosis transfer

The open set diagnosis transfer aims at detecting the emerging
unknown fault classes from the target domain while correctly
transferring diagnosis knowledge for known fault classes from
the source domain to the target domain. In recent years, several
approaches have been proposed to address the open set domain
adaptation issues in computer vision fields, such as OSBP [15],
STA [16], and CMU [17]. There are also some researchers making
exploratory works for industrial applications. Li et al. first proposed
a deep adversarial transfer learning network (DATLN), which is
motivated by the OSBP approach and has been successfully applied
into the rotating machinery emerging fault detection [18]. The
DATLN formulates the decision boundary through an adversarial
binary classifier, in which the unknown fault would be recognized
when the classification probability of corresponding samples
exceeds the fixed threshold (usually set as 0.5). Zhang et al.
develop an instance-level weighted adversarial network to solve
the OSDT issue [19]. The instance-level weights of target-domain
samples are proposed to describe the similarities with the source
classes, which are derived from the domain discriminator scores,
and the entropy minimization is applied to enhance the target out-
lier detection. Zhu et al. proposed an adversarial network with
multiple auxiliary classifiers (ANAMC), which develops multiple
classifiers to calibrate the threshold set in the OSBP approach
[20]. These auxiliary classifiers could better utilize the domain
knowledge with representative weights, which assist to formulate
an accurate decision bound more flexibly instead of forcing the
whole target data under a certain fixed threshold to one category.

Reviewing recent literatures, the existing OSDT models lack
essential theoretical analysis, thus omitting potential solutions
for improvement and leading to a biased solution [21]. In this
paper, the theoretical bound analysis is combined into OSDT model
design to complete the blank, which endows the OSDT model with
the capacity to detect the target outlier data newly occur with an
unsupervised manner. Moreover, the progressive adversarial learn-
ing strategy is designed to suppress the interactive negative trans-
fer under large degrees of openness and domain shifts.

3. Preliminaries

The definitions of the OSDT problem and some important con-
cepts are introduced in this section. The notations used in this
paper are summarized in Table 1.

3.1. OSDT problem definition

Assume that the labeled source data Ds ¼ xsi ;ysi

� �n ons

i¼1
Ps and

unlabeled target data Dt ¼ xtj
n ont

j¼1
Q

t
X are given, where Ps is the

joint probability distribution of the source domain, Qt
X is the mar-



Table 1
Notations and Their Descriptions.

Notation Description Notation Description

Ds Source domain Cs Number of known classes
Dt Target domain G Feature extractor
xsi The i-th sample of source domain C Multi-categories classifier
ysi The i-th label of source domain H Hypothesis space, set of classifiers C
xtj ; The j-th sample of target domain Rs �ð Þ;Rt �ð Þ Source, target risk
ns;nt Source, target domain samples number L �ð Þ Symmetric loss function
Ps Source domain joint distribution ps

i The source i-th class-prior probability

Qt Target domain joint distribution pt
i The target i-th class-prior probability

Qt
X Target domain marginal distribution Rs;i Cð Þ;Rt;i Cð Þ Source, target partial risk of i-th class

Xs;Xt Source, target sample space dlH Discrepancy distance

Ys;Yt Source, target label space k Shared error
yk Label vector of k-th class DO Open set risk
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ginal distribution of the target domain, with ns and nt indicating
the number of source and target samples respectively. The goal
of OSDT is to train an optimal target domain classifier
C : Xt ! Yt with drawing samples from both domains, which
should meet the following requirements:

1) C should classify the known target samples into the corre-
sponding known classes.

2) C should discriminatexzdqq4eles.

According to the definition of problem OSDT, the target domain
classifier C : Xt ! Yt only needs to detect unknown target data
and classify other target data. It is not necessary to classify
unknown target data, and all unknown target data are recognized
as ‘‘unknown fault type”. Correspondingly, the source label space
and target label space can be defined as Ys ¼ ykf gCs

k¼1 and

Yt ¼ ykf gCsþ1
k¼1 respectively, where the label yk denotes the k-th class

and yCsþ1 denotes the unknown fault class.
3.2. Theoretical upper bound

Given the hypothesis space H with a mild condition that con-
stant function Cs þ 1 2 H, for 8C 2 H, the expected risk on target
samples Rt Cð Þ can be bounded as:

Rt Cð Þ
1� pt

Csþ1
� Rs Cð Þ þ dl

H Qt
XjY�Cs

; Ps
X

� �
þ kþ Rt;Csþ1 Cð Þ

1� pt
Csþ1

� Rs;Csþ1 Cð Þ

ð1Þ

where k is a constant called as the shared error [22].
As shown in equation (1), the upper error of classifier 8C 2 H

on the target domain is bounded by four terms. Correspondingly,
the optimization of the diagnosis model for the OSDT problem
could be carried out under the guidance of the following four
aspects.

1) Source risk Rs Cð Þ: The source risk represents the classifica-
tion loss on the known data. According to the assumption
of OSDT, the source domain does not include any unknown
samples, thus the source risk could be bounded easily by
only minimizing the classification error on the source
labeled data.

2) Discrepancy distance dl
H Qt

XjY�Cs
; Ps

X

� �
: The discrepancy dis-

tance represents the divergence across different domains
at the feature level. In order to learn task-sensitive but
domain-insensitive features, the generative adversarial
mechanism is conducted to encourage domain confusion.
The optimization objective to train the generator G (to gen-
5

erate domain invariant features of diverse domains) and the
discriminator D (to enhance the discriminative architec-
tures) is expressed as:

minGmaxDEx�Ds logD G xð Þð Þ½ � þ Ex�Dt log 1� D G xð Þð Þð Þ½ � ð2Þ

where x�Ds and x�Dt are respectively the probability density
function of the source and target domain samples [23].

3) Shared error k: The constant k ¼ min
C2H

R�t Cð Þ
1�pt

Csþ1
þ Rs Cð Þ, where

R�
t Cð Þ indicates the partial risk of classifier C on known target

samples. k tends to be large when the conditional shift is
encountered, where the class-wise conditional distributions
are not aligned even with marginal distribution aligned [24].

4) Open set risk DO ¼ Rt;Csþ1 Cð Þ
1�pt

Csþ1
� Rs;Csþ1 Cð Þ: The open set risk DO

is designed to estimate the classification loss on the
unknown data [24]. It can be seen that DO consists of two
parts: the positive term Rt;Csþ1 Cð Þ and the negative term
Rs;Csþ1 Cð Þ. The larger value of positive part Rt;Csþ1 Cð Þ indicates
that more target samples are recognized as unknown and
the negative part Rs;Csþ1 Cð Þ prevents the source samples from
being recognized as unknown. Since the source samples are
labeled, the negative part Rs;Csþ1 Cð Þ could be eliminated, and
the value of DO is contributed by two parts: the openness
pt

Csþ1 (the proportion of unknown samples in the target
domain) and the partial risk on unknown target samples
Rt;Csþ1 Cð Þ.

4. Methodology

4.1. Overview of TPTLN

The proposed TPTLN is illustrated in Fig. 3, which mainly
includes three modules: feature extraction, distract stage, and
attract stage. Firstly, in the feature extraction stage, the frequency
spectrums of mechanical vibration signals are fed into the feature
generator G to extract the hierarchical features f s and f t . Secondly,
in the distract stage, the theoretically derived source risk term and
the open set risk term are estimated through uncertainty calibra-
tion and domain consensus learning strategy. Subsequently, in
the attract stage, the adversarial based weighting mechanism is
proposed to minimize the discrepancy distance term of shared
label space by assigning larger weights to target known classes
and alleviate the negative transfer from the private space by
assigning fewer weights to the target unknown classes. Finally,
the progressively learning strategy between the distract stage
and attract stage could enable the TPTLN to learn a tighter theoret-
ical bound for detecting the unknown fault classes in the target



Fig. 3. The detailed architecture of proposed TPTLN.
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domain and to build a more robust classifier for diagnosing the
known fault classes cross domains.
4.2. Distract stage

In this section, detailed descriptions of the distract stage in the
progressive learning framework are given. As the name suggests,
the distract stage mainly focuses on distracting those unknown
fault classes in the unlabeled target domains from known classes,
which could alleviate the interactive negative transfer caused by
wrongly matching the distributions of source known samples
and whole target samples. To carry out the distract stage theoret-
ically, the aforementioned source risk Rs Cð Þ and open-set risk DO

are employed to guide the model optimization.
4.2.1. Source risk Rs Cð Þ optimization
The source risk ensures that the cross-domain classifier could

accurately classify the known fault categories of the source
domain. To achieve this, a multi-categories classifier C is defined
to calculate the source risk, the source risk Rs Cð Þ is given as follows:

Rs Cð Þ ¼ Lcls ¼
1
ns

X
xi2Ds

Lce C1: Csj j G xið Þð Þ; ys
i

� �
ð3Þ

where the loss function is cross-entropy loss, which is commonly
used for multi-categories classification function, C is a general clas-
sifier for Cs þ 1 categories, i.e., the Csj j known classes in the source
domain plus the additional unknown class in the target domain.
G xið Þ xi 2 Dsj denotes the extracted features from the source domain
and C1: Csj j G xið Þð Þ indicates the probabilities of each sample to the
6

corresponding Csj j known classes.ys
i is the ground truth label infor-

mation of each source sample.

4.2.2. Open-set risk DO optimization
The open-set risk indicates the model’s capability of dividing

the unknown target classes and known target classes, and it should
be noticed that the openness pt

Csþ1 should be first evaluated accu-
rately. If the openness is too large, indicating most percentage data
in the target domain is unknown fault type pt

Csþ1 ! 1
� �

, this term
would dominate the open set risk DO and contribute most to the
whole upper bound. On the other hand, if pt

Csþ1 ¼ 0, which means
there has no unknown target samples, the whole upper error
bound would be same as CSDT problem. In the previous studies
[21], the unknown parameter openness pt

Csþ1 in DO is evaluated
tentatively, such as aggressively setting a large value to pt

Csþ1,
which could suffer fluctuation under different degrees of domain
shifts. To estimate the openness accurately, a coarse-to-fine dis-
criminator is employed in this paper, which is employed to learn
an adaptive openness boundary between known and unknown tar-
get samples. The designed discriminator includes a source discrim-
inator Bs for coarse separation and a target discriminator Bt for fine
separation.

4.2.2.1. Source discriminator Bs based on uncertainty calibration. A
multi-binary discriminator Bs is designed to achieve a coarse sep-
aration only with source labeled samples. The loss of proposed
source-only discriminator Bs can be optimized as follows:

Ls ¼
XCsj j

c¼1

1
ns

X
xi2Ds

Lbce Bs G xið Þð Þ; I ys
i ; c

� �� � ð4Þ
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where Lbce is the binary cross-entropy loss, and there are totally Csj j
source-only discriminators in Bs. The labelling function is defined as
I ys

i ; c
� � ¼ 1ifys

i ¼ c and I ys
i ; c

� � ¼ 0 otherwise.
For each target feature G xið Þ 2 Dt fed into Bs, the output proba-

bility pc from each binary discriminator could be seen as the pre-
diction confidence according to the respective source class Csj j,
and the source-only discriminator would output a probability vec-

tor p1; p2; � � � p Csj j
h i

. Since the target data of known classes prone to

have higher probabilities in one of the shared spaces than target
data of unknown classes, the maximum probability in the vector

p1; p2; � � � p Csj j
h i

is always used as the similarity stj between the jth
target sample and known class in previous studies [16]:

stj ¼ max Bs G xtj
� �� �

c ¼ 1;2; � � � ;j Csj j
� �

ð5Þ

The prediction confidence could perform well for the similarity esti-
mation for target data from the known label space because these
data would share similar structures which have occurred in the
source domain. However, for target data from the unknown label
space, it is hard to learn the structure-specific features which have
never occurred in the source domain and lead to weak discrim-
inability and biased similarity estimation.

In order to overcome this problem, a self-supervised uncer-
tainty calibration technique called as entropy analysis is combined
into similarity evaluation. The entropy is used to measure the
smoothness of the class distribution, and a larger entropy indicates
the class distribution has higher uncertainty.

Thus, the calibrated similarity with entropy analysis can be
expressed as:

stj ¼
1
2
� max Bs G xtj

� �� �
c ¼ 1;2; . . . ;j Csj j

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

confidence term

0
BB@

þ1�
X Csj j

j¼1
� pt

j log pt
j

� �� �
= log Cs		 		� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
entropy term

1
CCCA ð6Þ

From equation (6), the calibrated similarity is composed of con-
fidence and entropy, which are complementary to discriminate dif-
ferent degrees of uncertainty clearly and provide more accurate
estimation, the detailed explanation is given as follows:

1) If the target data are from the known classes, the confidence
term would be larger because the target feature may have
similar structures that occurred in the source domain and
the entropy term would be smaller because the predictions
tend to be sharp without uncertainty. Thus, the entropy term
could increase the similarity between target data and their
corresponding known categories.

2) If the target data are from the unknown classes, it is hard to
obtain accurate similarity only from the confidence term.
The target unknown data may have structure-specific fea-
tures which have never been captured before, therefore the
similarity from prediction confidence would be uncertain.
The entropy term would be larger when the prediction dis-
tributions are uncertain, which would decrease the similar-
ity between the target data and all known categories.

4.2.2.2. Target discriminator Bt based on the consensus score. The tar-
get discriminator Bt is expected to tune the coarse openness
boundary learned by Bs to a more-fine boundary, aims at further
separating the unknown and known target samples. To achieve
7

this, the similarity stj of all target domain samples are ranked in
descending order, and top-K samples with higher similarity and
bottom-K samples with lower similarity would be chosen to build
a subset D0

t . It should be noticed an unsuitable K will cause the
unexpected model degeneration: too small K would cause some
unknown samples to be ignored by the subset D0

t , and too large
K would allow some irrelevant samples to be included by the sub-
set D0

t . Therefore, the value of K should be increased or decreased
to expand or contract the discriminative bound of the subset
according to the degree of openness variance and batch size.

In this paper, an adaptive K initialization approach based on
domain consensus score (DCS) is introduced. The domain consen-
sus score aims at drawing the cross-domain knowledge to facilitate
the shared class clustering and private class discovery [25]. The
definition of domain consensus score is illustrated in Fig. 4. Given
a pair of matched clusters v s

i


 �c
i¼1 and v t

i


 �n
i¼1 with corresponding

centers ls
c and lt

l . From the source view, the similarity with all tar-
get cluster centers lt

1; � � � ;lt
L


 �
is calculated as:

rsi;l ¼ Sim v s
i ;l

t
l

� �
; l ¼ 1; � � � ; Lf g ð7Þ

where Sim �ð Þ denotes the cosine similarity. Then the source consen-
sus score could be formulated as the proportion of samples reach
consensus:

Ssc;lð Þ ¼
Pm

i¼11 argmaxl rsi;l
� �

¼ l
n o

m
ð8Þ

where 1 argmaxl rsi;l
� �

¼ l
n o

is indicated to judge whether vs
i holds

corresponding cluster index (l) across domains. Analogously, the
similarity with all source cluster centers could be obtained as equa-
tion (8) from the target view. And the target consensus score could
be formulated as:

Stc;lð Þ ¼
Pn

i¼11 argmaxc rti;c
� �

¼ c
n o

n
ð9Þ

Then the consensus score of this matched pair could be written

as: S c;lð Þ ¼
Ssc;lð ÞþSt

c;lð Þ
2 .

Since the number of underlying target classes L is unknown,mul-
tiple target clusters with different L would be used during the
domain consensus score calculation. And the instantiation of Lwith
the highest score is chosen for initializing K, which is given as:

K ¼
PC

i¼1N
t
i � S c;ið Þ
Nt � batchsize ð10Þ

where Nt
i is the number of target samples clustered by the paired

cluster v t
i , and S c;ið Þ indicates the domain consensus score of the cor-

responding matched pair, and Nt is the number of all target domain
samples.

Compared with the previous research using threshold-based
method [15,17] or fixing the value of K [16] for detection of
unknown target samples, the proposed adaptive K selection
approach provides a more robust way to train the known and
unknown target samples separation under different levels of
domain shifts, since the discriminative bound of the subset could
be adjusted flexibly.

Based on the filtered target subset D0
t , the target domain dis-

criminator Bt can be optimized as follows:

Lt ¼ 1
n0
t

X
xj2D0

t

Lbce Bt G xið Þð Þ;dj
� � ð11Þ

where Lbce is a binary cross-entropy loss, and dj indicates whether
the target samples of the filtered subset D0

t is known (dj ¼ 0) or
unknown (dj ¼ 1).



Fig. 4. Illustration of domain consensus score.
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With the introduced Bs (providing the similarity of each target
sample for the coarse separation) and Bt (providing the probability
of each target sample being known or unknown fault classes for
the fine separation), an adaptive decision boundary of target sam-
ples could be obtained gradually, and the unknown parameter
openness pt

Csþ1 of open-set risk could be estimated as follows:

pt
Csþ1 ¼ 1

nt

X
xj2Dt

1� Bt G xj
� �� � ð12Þ

After estimating the openness pt
Csþ1 by the coarse-to-fine discrimi-

nator, the open-set risk DO could be obtained and the optimization
function is given as follows:

DO ¼ pt
Csþ1

1� pt
Csþ1

X
xj2Dt

Lmse C Csj jþ1 G xj
� �� �

; y Csj jþ1

� �
ð13Þ
4.3. Attract stage

In the attract stage, the distribution discrepancy between the
source domain and target domain should be reduced to achieve
the learning domain-invariant features. It should be noticed that
only the shared space of the source domain and target domain
need to be aligned. Therefore, a weighted distribution risk opti-
mization strategy is proposed to promote the alignment of source
classes and target known classes, and to suppress the unexpected
alignment of source classes and target unknown classes.

4.3.1. Weighted distribution risk optimization
In order to assign different weights to each target sample, the

output of target discriminator Bt is used as a soft instance-level
weight wj ¼ Bt G xj

� �� �
; xj 2 Dt . Based on the definition of target

known/unknown discriminator Bt , a larger wj indicates that the
sample has higher probabilities of being from the shared space
(known classes) and should be paid more attention during the dis-
tribution risk minimization, while a smaller wj implies that the
sample has a higher probability of being from the private space
(unknown classes) and should be suppressed during the distribu-
tion risk minimization. Correspondingly, the target sample weights
wj

nt
j¼1 is exploited for the adversarial domain adaptation process,

and the weighted distribution risk optimization function can be
obtained as follows:

Ld ¼ 1
ns

X
xi2Ds

Lbce D G xið Þð Þ;dið Þ � 1P
xj2Dt

wj

�
X
xj2Dt

1�wjLbce D G xj
� �� �

;dj
� �� � ð14Þ
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where the domain adversarial loss Ld aims at minimizing over D and
maximizing over G. The domain discriminator D is trained to iden-
tify whether the input features are from the source domain or target
domain, while the feature generator G is expected to confuse the
discriminator D through extracting the domain-invariant features.
Due to the weighting mechanism, target samples with higher prob-
abilities of being known classes would dominate the adversarial
process compared with unknown target samples, which means that
the distribution alignment will be concentrated on target
known samples and source samples iteratively during the minimax
game.

4.4. Training procedure

The training procedure of proposed TPTLN is divided into two
steps, which include the distract stage of detecting the unknown
fault classes from target domain and attract stage of aligning the
target known data with source data. The two separate stages are
alternated progressively to minimize the theoretical bound of
OSDT issue and to effectively suppress the interactive negative
transfer problem.

Step 1. Distract stage training

In the first step, the feature generator G and classifier C are
trained to accurately classify the source fault classes. Subsequently,
a source-only discriminator Bs and a target-only discriminator Bt is
trained to build a coarse-to-fine decision boundary to discriminate
the known and unknown fault classes in the target domain. Denote

by hf ; hy; ht and hcs
		 Csj j
c¼1 the parameters of the feature generator G, the

classifier C, the target-only discriminator Bt and the source-only

discriminator Bs, and the optimal parameters bhf ; bhy; bht and bhc

s

			 Csj j

c¼1

can be obtained as follows:

bhf ; bhy; bht ; bhc

s

			 Csj j

c¼1

� �
¼ argmin

hf ;hy ;ht ;h
c
s j Csj j

c¼1

Lcls þ asLs þ atLt þ aoDO ð15Þ

Step 2. Attract stage training

In the second step, the feature generator G and domain discrim-
inator D are trained in an adversarial way to conduct distribution
alignment, in which only the target known fault classes would be
attracted with source classes. Denote by hd the parameters of the

domain discriminator D, the optimal parameters of bhf ; bhy; bhd can
be given as:
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bhy; bhd

� �
¼ argmin

hy ;hd

Lcls þ adLd ð16Þ

bhf

� �
¼ argmin

hf

Lcls � adLd ð17Þ

With the proposed TPTLN model, the theoretical error upper
bound of OSDT issue can be well optimized and the pending prob-
lem of negative transfer caused by the unknown fault classes could
be effectively suppressed. The detailed algorithm of TPTLN is given
in Table 2, it should be noticed that the distract stage and attract
stage could benefit each other through the proposed progressively
training strategy between two steps. Step 1 performs a coarse-to-
fine way to discriminate unknown target data and estimate the
openness adaptively, which could suppress the unexpected align-
ment of unknown classes and better facilitate the alignment of
known classes in step 2. Step 2 performs an adversarial way to con-
duct domain alignment, which helps building the decision bound-
ary of unknown data in step 1 more accurately.

5. Experimental case study

5.1. Compared methods and evaluation metrics

Totally seven representative deep transfer learning approaches
are selected as the comparative methods and introduced as
follows:

1) FTNN (Feature-based Transfer Neural Network) [9] aims at
extracting the transferable features through multi-layer
domain adaptation and pseudo-label learning. The maxi-
mum mean discrepancy (MMD) across different layers of
the CNN network is minimized to align the distributions in
source and target domains.

2) DCTLN (Deep Convolutional Transfer Learning Network)
[11] employs an adversarial way to transfer diagnosis
Table 2
Details of the training procedure.

Algorithm: Training procedure of proposed method

Input: source samples xsi ; y
s
i


 �ns

i¼1, target samples xsi

 �nt

i¼1

Parameter: learning rate c, batch size m, the number of iterations T ,

network parameters hf ; hy; ht ; h
c
s

		 Csj j
c¼1; hd .

Output: predicted target label byt .

1: Initialize hf ; hy; ht ; h
c
s

		 Csj j
c¼1; hd;as;at ;ao;ad

Initialization stage

2: Sample source minibatch xsi1 ; y
s
i1

� �
; � � � ; xsim ; y

s
im

� �n o
3: Sample target minibatch xti1 ; � � � ; xtim

n o
.

4: Initialize Lcls; Ls according to Eqs. (5), (6).
5: Initialize the Top-K value according to Eqs. (7)–(12)
Distract stage
6: t ¼ 0
7: while t < T do
8: Calculate Lt according to Eqs. (13)
9: Calculate DO according to Eqs. (14) and (15)

10: Update parameter: bhf ; bhy; bht and bhcs 			 Csj j

c¼1bhf ; bhy; bht ; bhcs 			 Csj j

c¼1

� �
¼ argmin

hf ;hy ;ht ;h
c
s j Csj j

c¼1

Lcls þ asLs þ atLt þ aoDO

Attract stage
11: Calculate Ld according to Eqs. (16) by leveraging weighted target samples.
12: Update parameter:hf ; hy; hdbhy; bhd� �

¼ argmin
hy ;hd

Lcls þ adLd

bhf� �
¼ argmin

hf

Lcls � adLd

13:t ¼ t þ 1
14: end while
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knowledge across different machines. The domain adversar-
ial loss and the MMD loss are combined to minimize the dis-
tribution discrepancy between the source domain and target
domain together.

3) OSBP (Open Set Domain Adaptation by Backpropagation)
[15] aims at constructing a decision boundary to detect the
unknown target samples. A classifier is trained to make a
boundary between the source and the target samples
whereas a generator is trained to make target samples far
from the boundary.

4) STA (Separate to Adapt) [16] employs a two-stage network
structure to solve the open-set transfer learning problem, in
which the first stage is trained to discriminate the target
unknown data by exploring the source data, and the second
stage is trained to adapt the distributions in the scope of
known classes.

5) CMU (Calibrated Multiple Uncertainties) [17] proposes a
novel transferability measure to detect the outlier data,
which is estimated by a mixture of uncertainty quantities
in complementation: entropy, confidence, and consistency,
defined on conditional probabilities calibrated by a multi-
classifier ensemble model.

6) DATLN (Deep Adversarial Transfer Learning Network) [18]
first discusses the open set setting for transferring diagnosis
knowledge in industrial scenarios. An adversarial classifier is
designed to align the samples (with the known classes) in
both source and target domains and to detect samples with
the unknown classes.

7) IW-OSDA (Instance-Level Weighted Open-set Domain
Adaptation) [19] combines an outlier classifier into the
adversarial-based network to enhance the unknown fault
samples detection for OSDT problem. The instance weight
obtained from the domain discrepancy is developed to
describe the similarity of target samples with the source
classes.

To comprehensively evaluate the proposed TPTLN and other
baseline methods, two widely used evaluation metrics, normalized
accuracy for all classes (OS) and normalized accuracy for the
known classes only (OS�), are given as follows:

OS ¼ 1
Cs þ 1

XCsþ1

c¼1

x : x 2 Dc
t ^ C G xð Þð Þ ¼ c

		 		
x : x 2 Dc

t

		 		 OS�

¼ 1
Cs

XCs

c¼1

x : x 2 Dc
t ^ C G xð Þð Þ ¼ c

		 		
x : x 2 Dc

t

		 		 ð18Þ

where Dc
t denotes target samples belonging to the c-th fault class,

and C G xð Þð Þ ¼ c indicates that classifier C correctly assign the sam-
ple x to the corresponding category.

5.2. Dataset description

5.2.1. PU bearing dataset
The rolling bearing dataset is acquired from the Paderborn

University which consists of bearing artificial faults and real dam-
ages [26]. Vibration signals of the bearing housing were collected
by a piezoelectric accelerometer with a sampling frequency as
64 kHz. By changing the rotational speed of the drive system, the
radial force onto the test bearing, and the load torque on the drive
train, different working conditions could be performed. As shown
in Table 3, eight different bearings with real damages caused by
the accelerated lifetime tests are selected as the PU dataset.

The frequency spectrums of Paderborn bearing vibration signal
are selected as the model input, which is illustrated in Fig. 5. It can
be found that the fault characteristics of different health conditions
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may have shifts and divergence across different working condi-
tions. Thus, the first challenge for the diagnosis model is to transfer
the domain-invariant knowledge across different working condi-
tions. Furthermore, the source domain and target domain have dif-
ferent label spaces in the OSDT scenario, which means that some
emerging fault categories would occur during the testing stage.
Therefore, the second challenge is how to discriminate these
unknown data in the target domain. For example, if the source
domain does not have IRF samples, the challenge is how to avoid
misclassifying target data of IRF as the known faults, since the
source known samples may share similar frequency structures as
the unknown IRF samples.

5.2.2. PHM 2009 gearbox dataset
The planet gearbox dataset is acquired from PHM 2009 data

challenge, which contains 3 shafts, 4 gears, and 6 bearings [27].
Two sets of gears including spur gears and helical gears with differ-
ent fault types are tested. The dataset is comprised of 2 channels of
Table 3
Paderborn university accelerating life test bearing dataset specification.

Health Label Element Specification

1-OSF Outer Ring Fatigue pittin
2-OSP Outer Ring Plastic deform
3-ORF Outer Ring Fatigue pittin
4-ISF Inner Ring Fatigue pittin
5-IRF Inner Ring Fatigue pittin
6-IORF Inner & Outer Ring Fatigue pittin
7-IORP Inner & Outer Ring Plastic deform
8-H Health /

O: Outer ring fault; I: Inner ring fault; IO: Inner ring & Outer ring fault.
S: Single fault; R:Repetitve fault; F: Fatigue pitting; P: Plastic deformation.

Fig. 5. The frequency spectrums of Paderbor

10
accelerometer signals and 1 channel of tachometer signal acquired
by corresponding sensors. Signals were collected for each health
condition with a sampling frequency of 66.67 kHz and an acquisi-
tion time of 4 s. Totally 6 different health conditions of the planet
gearbox are selected, and the detailed description is given in
Table 4.
5.3. OSDT task and implementation details

5.3.1. Descriptions of OSDT tasks
In this study, seven different open set diagnosis transfer tasks

based on bearing and gearbox datasets are investigated. Specifi-
cally, the detailed settings of bearing OSDT tasks and gearbox OSDT
tasks are shown in Table 5 and Table 6 respectively.

Based on the selected PU bearing dataset, four OSDT tasks are
designed, which are given in Table 5. The openness gap between
the source domain and the target domain is gradually larger, which
Type Working conditions

g S Speed: 900 rpm/1500 rpm
Load torque: 0.7 Nm/0.1 Nm
Radial force: 1000 N/400 N

ation S
g R
g S
g R
g R
ation R

/

n bearing data across different domains.



Table 4
2009 PHM gearbox dataset specification.

Health Label Element Fault specification Working condition

1-N / Health Shaft speed: 30/35/40/45/50 Hz
Load: Low/High2-G Helical Gear chipped

3-BF&SI Helical Bearing combination & ball fault, shaft imbalance
4-G&E Spur Gear chipped & eccentric
5-BI&SK Spur Bearing inner fault, shaft keyway sheared
6-BF&BO&SI Spur Bearing ball & outer fault, shaft imbalance

Table 5
Detailed descriptions of designed bearing OSDT tasks.

Task No. Source label Target label Sample number Openness (o)

T1 1,2,3,4,6,7,8 1,2,3,4, 5*,6,7,8 Source:700, Target:800 0.125
T2 1,3,4,6,7,8 1,2*,3,4,5*,6,7,8 Source:600, Target:800 0.25
T3 1,2,3,4,5 1,2,3,4,5,6*,7*,8* Source:500, Target:800 0.375
T4 1,4,6,8 1,4, 5*,6,8 Source:400, Target:800 0.5

Source domain working condition: Load torque: 0.1 Nm, Radial force: 1000 N.
Target domain working condition: Load torque: 0.7 Nm, Radial force: 400 N.

Table 6
Detailed descriptions of designed gearbox OSDT tasks.

Task No. Source label Target label Sample number Openness(o)

T1 1,3,4 1,3,4,6* Source:400, Target:400 0.25
T2 1,3,4 1,3,4, 5*, 6* Source:500, Target:500 0.4
T3 1,3,4 1,2*,3, 4,5*,6* Source:600, Target:600 0.5

Source domain working condition: Load torque: Low, Shaft speed: 40 Hz.
Target domain working condition: Load torque: High, Radial force: 45 Hz.
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is expected to evaluate the robustness and accurateness of all
methods under different degrees of openness comprehensively.

Based on the selected gearbox dataset, three open-set diagnosis
transfer learning tasks are designed, which is given in Table 6. The
openness gap between the source domain and the target domain
Fig. 6. Detailed sample distribution

Table 7a
Architecture of the common modules in the compared models.

Layers Parameter size

Feature Generator G
Input /
Convolutional_1 Channel:128, kernel size:3, padding = 0
Convolutional_2 Channel:64, kernel size:3, padding = 0
Convolutional_3 Channel:32, kernel size:3, padding = 0
Convolutional_4 Channel:32, kernel size:3, padding = 0
Convolutional_5 Channel:16, kernel size:3, padding = 0
Linear Dense number: 1024
Classifier C
Linear Dense number: K + 1
Discriminator D
Linear_1 Dense number: 1024,BatchNormalization
Linear_2 Dense number: 1024,BatchNormalization
Linear_3 Dense number: 1

11
are gradually larger. Moreover, the source samples and target sam-
ples are imbalanced across different health states, and the detailed
samples distributions of the source domain and target domain
among three tasks are illustrated as Fig. 6. The gearbox OSDT tasks
not only evaluate the transferability of compared models under
across different health states.

Output size Activation

�1 � 3 � 64 � 64 /
�1 � 128 � 62 � 62 ReLU
�1 � 64 � 60 � 60 ReLU
�1 � 32 � 58 � 58 ReLU
�1 � 32 � 56 � 56 ReLU
�1 � 16 � 54 � 54 ReLU
�1 � 1024

�1�(K + 1) Softmax

�1 � 1024 LeakyReLU
�1 � 1024 LeakyReLU
�1 � 1 Sigmoid
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different degrees of openness but also explore the robustness of
compared models under imbalanced training and testing data.

5.3.2. Implementation details
For fair comparisons, the architectures of all the methods,

including the feature generator, the domain discriminator, and
the classifier are implemented with the same architecture param-
eters as the proposed approaches, which are shown in Table 7a.
Besides, the parameters of the proposed coarse-to-fine discrimina-
tor are presented in Table 7b. The detailed information of model
hyperparameters, such as the learning rate, the optimizers and
the number of training iterations are initialed as Table 8, which
would be adjusted to produce the optimal results during the train-
ing process.

5.4. Experimental results and performance analysis

5.4.1. Experimental results
The compared results on the above OSDT tasks are given in

Table 9a and Table 9b, including the normalized accuracy for all
classes (OS) and normalized accuracy for the known classes only
(OS�). Each task is averaged 10 trials to reduce randomness and
Table 7b
Architecture of the common modules in the compared models.

Layers Parameter size Output
size

Activation

K-Coarse discriminator Bs

Input / �1 � 1024 /
Linear_1 Dense number:

256,BatchNormalization
�1 � 256 LeakyReLU

Linear_2 Dense number:
256,BatchNormalization

�1 � 256 LeakyReLU

Linear_3 Dense number: 1 �1 � 1 Sigmoid
Fine discriminator Bt

Input / �1 � 1024 /
Linear Dense number: 2 �1 � 2 Softmax

Table 8
Training parameters in the compared models.

Item Detailed parameter

as;at ;ao 0.25
ad 0.5
Optimizer of the coarse-to-fine

discriminator
Adam

(lr ¼ 1� 10�4;weight decay ¼ 5� 10�4)
Optimizer of the domain

discriminator
Adam

(lr ¼ 1� 10�4;weight decay ¼ 5� 10�4)
Optimizer of the source classifier Adam

(lr ¼ 1� 10�4;weight decay ¼ 5� 10�4)
Optimizer of the feature generator Adam

(lr ¼ 1� 10�4;weight decay ¼ 5� 10�4)
Training iterations

Batch size
500
40

Table 9a
Accuracy (%) of each method on the bearing OSDT tasks.

Method Task T1 Task T2

OS OS� OS OS�

FTNN 79.8 ± 4.9 89.1 ± 3.0 67.4 ± 3.8 88.9 ± 2.
DCTLN 71.1 ± 3.9 82.1 ± 4.3 70.2 ± 5.3 92.2 ± 3.
OSBP 69.3 ± 4.5 77.8 ± 4.0 79.2 ± 3.4 91.4 ± 4.
STA 63.5 ± 4.9 73.0 ± 3.6 63.6 ± 3.5 58.2 ± 4.
DATLN 82.0 ± 3.7 94.1 ± 1.5 63.0 ± 4.3 86.7 ± 3.
CMU 97.5 ± 1.4 95.1 ± 1.3 95.5 ± 1.4 93.9 ± 1.
IWOSDA 88.2 ± 1.8 86.4 ± 2.2 97.5 ± 0.9 96.7 ± 1.
TPTLN 98.5 ± 1.0 98.2 ± 1.2 99.9 ± 0.3 99.8 ± 0.
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to provide the mean value and standard deviation of the testing
accuracies. It can be seen the proposed TPTLN method generally
outperforms other methods in all concerned tasks. It should be
noticed that some methods perform better than TPTLN when only
considering the known classes accuracy (OS�) but perform much
worse on all classes. For example, the CMU model performs better
than TPTLN on the bearing taskT3 without considering the
unknown class and reaches high accuracy as 97.9%. However, when
considering the emerging fault data from the target domain, the
misclassification of unknown faults would greatly degenerate the
model transferability, leading to the lower accuracy as 85.7%. The
DATLN model also suffers this problem, which performs well on
classifying the known data but performs poorly on all the classes.

To further compare the model performance under different
degrees of openness, the classification results of all methods for
the bearing task T3 and gearbox task T3 are given in Fig. 7. As
shown in Fig. 7, the FTNN and DCTLN models both suffer the neg-
ative transfer caused by the emerging fault class. The poor diagnos-
tic performance of these standard transfer learning models could
be attributed to the global domain alignment strategy without con-
sidering the effect of outlier data from yCsþ1 in the target domain,
and this non-discriminative domain alignment strategy would lead
to two problems: 1) wrongly recognizing unknown fault data as
known fault class (marked with blue dashed lines) and 2) learning
biased features because of matching the unknown data with source
data (marked with purple dashed lines). These two problems limit
the diagnostic performance of FTNN and DCTLN on all concerned
OSDT scenarios, and as the openness increases, the transferability
decreases more significantly.

Different from the FTNN and DCTLN matching the whole target
domain with the source domain, the open-set transfer learning
models achieve significant improvements by extracting shared fea-
tures across domains for fault diagnosis and recognizing the
unknown class to avoid the negative transfer. However, the prob-
lem of discriminability fluctuation is still not well addressed under
different degrees of openness. It could be observed that some mod-
els tend to be over-discriminative. For example, in the bearing task
T3, STA, OSBP, and IW-OSDA models misclassify the known sam-
ples as the unknown fault category (marked with the red dashed
lines). While some models prone to be insufficiently discrimina-
tive. For example, in the gearbox task T3, OSBP, DATLN, and STA
miss some unknown samples and recognize them as the known
fault categories. These issues can be attributed to the fact that
the above-compared methods could not adjust the discriminative
bound according to the degree of openness in the target domain,
leading to over-discrimination or under-discrimination of outlier
samples. Correspondingly, the proposed model could well address
the pending issue by the coarse-to-fine discriminator module, esti-
mating the underlying openness and adjusts the decision bound
adaptively. Noticeable performance increases can be seen between
the TPLTN and other OSDT models concerning both known and
unknown classes.
Task T3 Task T4

OS OS� OS OS�

3 52.0 ± 5.7 82.6 ± 3.6 37.0 ± 3.8 76.2 ± 4.7
6 56.6 ± 5.0 87.1 ± 3.2 38.5 ± 5.1 75.3 ± 6.1
4 53.1 ± 5.5 79.3 ± 4.8 40.3 ± 7.1 78.2 ± 5.4
1 63.1 ± 4.2 76.9 ± 5.0 45.1 ± 6.3 91.1 ± 4.8
9 72.8 ± 4.9 98.2 ± 1.0 51.9 ± 3.7 100
75 85.7 ± 2.1 97.9 ± 1.9 86.9 ± 2.6 73.2 ± 5.2
2 88.9 ± 2.0 82.2 ± 3.4 100.0 100.0
3 97.9 ± 0.3 95.7 ± 1.0 100.0 100.0



Table 9b
Accuracy (%) of each method on the gearbox OSDT tasks.

Method Task T1 Task T2 Task T3

OS OS� OS OS� OS OS�

FTNN 79.8 ± 4.9 89.1 ± 3.0 67.4 ± 3.8 88.9 ± 2.3 52.0 ± 5.7 82.6 ± 3.6
DCTLN 71.1 ± 3.9 82.1 ± 4.3 70.2 ± 5.3 92.2 ± 3.6 56.6 ± 5.0 87.1 ± 3.2
OSBP 69.3 ± 4.5 77.8 ± 4.0 79.2 ± 3.4 91.4 ± 4.4 53.1 ± 5.5 79.3 ± 4.8
STA 63.5 ± 4.9 73.0 ± 3.6 63.6 ± 3.5 58.2 ± 4.1 63.1 ± 4.2 76.9 ± 5.0
DATLN 82.0 ± 3.7 94.1 ± 1.5 63.0 ± 4.3 86.7 ± 3.9 72.8 ± 4.9 98.2 ± 1.0
CMU 80.8 ± 1.6 74.3 ± 1.9 77.1 ± 2.0 61.9 ± 3.4 80.1 ± 2.1 61.7 ± 3.3
IWOSDA 93.4 ± 1.4 91.3 ± 1.9 91.0 ± 1.4 86.9 ± 2.2 86.0 ± 2.0 85.6 ± 3.9
TPTLN 94.0 ± 2.0 92.0 ± 2.6 94.20 ± 1.4 90.3 ± 2.3 92.3 ± 1.6 93.3 ± 2.1

Fig. 7. Classification results of all methods on the designed OSDT tasks: (a) confusion matrices on bearing task T3 and (b) confusion matrices on gearbox task T3.
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5.4.2. Performance investigation
To evaluate the performance of proposed method intuitively,

the learned instance-level weights of the target domain samples
in all OSDT tasks are investigated. Since the STA, CMU, and IW-
OSDA models discriminate the outlier samples by assigning differ-
ent weights, the results of these methods are given for comparison,
and visualized results are shown in Fig. 8, where the weights of tar-
get outlier instances are marked in red.
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From Fig. 8 it can be observed that in general, large weights
would be obtained for the samples sharing the same health states
with the source domain data, and small weights should be
assigned to the target outlier samples. However, there are still have
some incorrect weights assignment in the compared methods,
leading to the decrease of discriminability. For example, concern-
ing the bearing OSDT task T3, the target outlier instances with label
6 should have low weight values but obtain a high level of weight



Fig. 8. Mean values of weights of the target instances in each class: (a) the results on the bearing OSDT tasks and (b) the results on the gearbox OSDT tasks.
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values, which would be paid more attention during the domain
adaptation with source the known samples and lead to the biased
feature alignment. The results of bearing task T4 also follow similar
patterns. On the other hand, with respect to the gearbox OSDT task
14
T3, the target known instances with label 1 should obtain high
weights to be aligned with the source domain data but are
assigned with a low level of weight values, which would be paid
less attention in the domain adaptation and lead to the insufficient
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feature alignment. The reasons for the performance degradation of
compared methods are discussed as follows:

1) STA method employs a two-step discriminator structure to
find the outlier sample with extreme similarity. Since STA
only focuses on the samples with the significant divergence,
treating the outlier samples as one general class. It is argu-
ably sub-optimal since the target outlier intrinsic structures
could not be fully exploited and those outlier samples with
less diverged features would be missed.

2) CMU method constructs the target instance weights by cal-
culating the statistical metrics from confidence, entropy,
and consistency. When the outlier samples share similar
intrinsic structures as the known classes, the weights of out-
lier samples are difficult to be further decreased. For the
gearbox tasks, although CMU assigns a high level of weights
to the target known samples, the target outlier samples also
achieve a middle level of weights, which prevents fine
discrimination.

3) IW-OSDA method employs the instance-level weight to
detect the target outlier samples, and it chooses a fixed pro-
portion of target samples with low similarity (set as 10%) for
further discrimination. However, those outlier samples out-
side the selected proportion would be always unable to be
chosen for further discrimination, resulting in the incorrect
classification of certain categories.

Compared with the above approaches, the proposed method
solves the above problems through learning an adaptive decision
bound from the coarse-to-fine discriminator. The coarse discrimi-
nator would estimate the underlying outlier samples proportion
and adjust the decision bound accordingly, and the fine discrimina-
tor would compress the weights of outlier samples to zero for fur-
ther suppressing the negative effect on the shared classes
alignment. The results of all tasks intuitively validate that the pro-
posed method could accommodate different degrees of openness
shift better and assign the corresponding level of weights to the
target samples.
Fig. 9. The visualization of the domain-in
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5.4.3. Feature visualization
To compare the model performance and reflect the advantages

of proposed method, the t-distributed stochastic neighbor embed-
ding (t-SNE) algorithm [28] is used to visualize the extracted fea-
tures from the generator G. Take the gearbox task T1 for
example. The visualized features of t-SNE from different models
are shown in Fig. 9.

As shown in Fig. 9, the FTNN and DCTLN could not discriminate
the emerging fault data from the target domain, which classify the
target unknown samples (marked as a purple cross) into the
known category (marked as a blue circle). This is because the FTNN
and DCTLN only have domain distribution module but lack target
outlier data detection module. Moreover, the significant overlap-
ping between different health states caused by the large-biased
target domain could be observed in the FTNN and DCTLN module,
which leads to misclassification and unexpected negative transfer.
Compared with FTNN and DCTLN, the OSBP designs an outlier data
discrimination module to recognize the target emerging fault data
as an unknown category. However, the unknown data recognition
depends on a fixed threshold (set as 0.5 empirically [15]), which
lacks flexibility and robustness under different degrees of open-
ness. It could be seen that there has multiple partial overlapping
across different health states, leading to a great performance
reduction on classification consequently.

The STA, DATLN, CMU, and IW-OSDA perform better compared
with the above three approaches. It can be observed data from the
known categories could be well separated, but there is still have
noticeable overlapping between the target outlier data and the
known data, leading to less effective cross-domain diagnostic
performance.

In the proposed TPTLN model, the distributions of different
domains are drawn closer to each other, and distributions of
shared classes are drawn farther to each other, which indicates
the high transferability of the known classes. Furthermore, the out-
lier samples are fully pushed away from the known classes, which
facilitates the unknown target samples detection and suppresses
the negative transfer on the shared space. Compared with other
models, the TPTLN model could learn promising cross-domain fea-
tures to achieve accurate fault diagnosis under the large degrees of
variant features on gearbox task T1.
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openness fluctuation, which considers both the intra-class com-
pactness and the inter-class separability.

5.5. Ablation study

5.5.1. Component analysis
In this section, the ablation studies are conducted to investigate

the effect of model components guided by the theoretical bound
analysis on the final performance. Concretely, three specially
designed modules are evaluated, including a coarse discriminator
Bs based on the calibrated similarity, an adaptive fine discriminator
Bt based on the domain consensus score and an adversarial dis-
criminator D based on weighted distribution. The comparative
results of their variants are given in Table 10.

As shown in Table 10, the TPTLN model with three modules
shows superiority on all OSDT tasks of rolling bearings and gearbox
compared with other variants. Detailed analyses for above results
and corresponding discussions are listed as follows:

1) Calibrated similarity module.

The variants V1 and V2 both employ only one index (entropy or
confidence) to describe the similarity of the unknown target sam-
ples with the source known samples. To visualize the difference on
detecting the unknown samples by these variants, the estimated
Table 10
Comparative results of TPTLN with the variants.

Methods V1 V2

Confidence similarity in Bs
p

Entropy similarity in Bs
p

Adaptive K selection in Bt
p p

Weighted matching in D
p p

OSDT for the rolling bearings
Accuracy for all classes OS (%) T1 87.45 ± 1.92 89

T2 96.45 ± 1.47 94
T3 77.55 ± 1.67 87
T4 90.15 ± 2.01 10

Accuracy for known classes OS* (%) T1 85.41 ± 1.44 88
T2 94.28 ± 1.58 91
T3 75.11 ± 3.11 78
T4 77.99 ± 3.06 10

OSDT for the gearbox
Accuracy for all classes OS (%) T1 80.20 ± 1.47 86

T2 82.05 ± 2.63 91
T3 87.90 ± 1.99 87

Accuracy for known classes OS* (%) T1 73.80 ± 3.40 82
T2 69.15 ± 5.13 88
T3 87.0 ± 3.51 79

Fig. 10. The estimated similaritie
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similarities of target samples on rolling bearing task T4 are shown
in Fig. 10. It can be seen both V1 and V2 have their disadvantages.
Concretely, the entropy-based method (V1) assigns high weights to
all the unknown target samples to guarantee the discriminability,
but it assigns excessive weights to some target known samples
causing them to be misclassified as an unknown category (the part
enclosed by the red dotted line). On the other hand, the
confidence-based method (V2) avoids the over-discriminating by
assigning lowweights to all the known samples, but it misses some
unknown samples and assigns insufficient weights causing them to
be misclassified as the known category (the part enclosed by the
red dotted line).

These situations could be attributed that the entropy-based
method could easily detect the target unknown samples based
on high uncertainty from their structure-specific features, but it
is insensitive to uncertain known samples, leading to the incorrect
recognition for part of known categories. The confidence-based
method is opposite to entropy, which could recognize those known
samples with high certainty from their structure-similar features
as the source domain, but it exhibits low discriminability for
uncertainty and is prone to miss part of unknown samples. Based
on the above analyses, the V5 is designed to overcome the disad-
vantage of each variant. From Fig. 10 it can be found that the pro-
posed calibrated similarity measurement method could
distinguish the known samples and unknown samples accurately,
V3 V4 V5

p p p
p p p

p p
p p

.60 ± 1.45 94.95 ± 1.21 97.7 ± 0.93 98.45 ± 1.01

.30 ± 1.60 90.05 ± 1.98 89.7 ± 1.65 99.90 ± 0.30

.25 ± 1.94 73.65 ± 2.21 85.80 ± 2.16 97.9 ± 0.34
0.00 93.30 ± 2.05 100.00 100.00
.32 ± 2.46 94.25 ± 1.30 96.94 ± 1.31 98.22 ± 1.18
.38 ± 1.83 86.93 ± 2.12 87.71 ± 2.43 99.86 ± 0.28
.87 ± 2.92 76.69 ± 3.74 37.10 ± 2.74 95.69 ± 1.01
0.00 86.14 ± 4.37 100.00 100.00

.90 ± 1.67 94.00 ± 0.62 91.80 ± 1.49 94.00 ± 1.99

.80 ± 1.43 92.50 ± 2.00 65.80 ± 2.38 94.20 ± 1.38

.80 ± 1.08 83.50 ± 1.91 37.30 ± 2.02 92.25 ± 1.69

.28 ± 2.48 92.03 ± 1.41 89.81 ± 1.83 91.96 ± 2.65

.99 ± 2.13 87.29 ± 2.47 47.46 ± 1.68 90.28 ± 2.31

.35 ± 2.87 88.56 ± 2.28 75.62 ± 3.26 93.18 ± 2.19

s based on different indexes.



Fig. 11. The openness estimation and selection of K values based on domain consensus score: (a) results on bearing OSDT tasks and (b) results on gearbox OSDT tasks.
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because it exploits complementary characteristics of both entropy
and confidence, building a more robust discriminator to cover all
types of predictions.

2) Adaptive K selection module.

The main difference between V3 and V5 is the choice of K value.
In V3, the subset D0

t only consists of one sample with the highest
similarity (denoted as unknown) and one sample with the lowest
similarity (denoted as known). In V5, the subset D0

t is built through
an adaptive K selection method based on the proposed domain
Fig. 12. The OS* of OSDT tasks with different values of K: (a) results
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consensus score (DCS), which would choose top-K samples with
high similarities (bottom-K samples with low similarities) accord-
ing to the degree of openness. The details of adaptive K selection
method on bearing tasks and gearbox tasks are shown in Fig. 11.

From Fig. 11 the proposed adaptive K selection method firstly
assumes that there are different numbers of outlier classes, calcu-
lates the domain consensus score of each candidate class, and
determines the candidate with the highest score as the number
of true outlier classes. Subsequently, the openness of each task is
estimated by accumulating samples reaching consensus under
the current outlier setting. From the result, it can be found the
on bearing OSDT tasks and (b) results on gearbox OSDT tasks.
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divergence between the calculated openness and the true underly-
ing openness (marked with red color) of each task is slightly small,
which proves the effectiveness of the proposedmethod on estimat-
ing the outlier samples proportion. Finally, the subset size K is
determined according to the calculated openness and batch size,
and the classification results of all OSDT tasks based on different
K are shown in Fig. 12. It can be found that the normalized accu-
racy for the known classes (OS*) on each task reaches optimum
with the calculated K based on DCS, which proves that the pro-
posed adaptive K selection approach could adjust the subset bound
under different degrees of openness.

3) Weighted distribution matching module.

The difference between V4 and V5 is that whether assigning dif-
ferent weights on target samples during the domain-invariant fea-
ture extraction. From Table 10 it can be found the performance of
Fig. 13. The classification resu

Fig. 14. The sensitivity analysis to th
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V4 would suffer dramatic degeneration on gearbox OSDT task T2
and T3, and the classification results of these tasks are visualized
in Fig. 13. In task T2 it can be found the model not only misclassi-
fied the known samples but also recognize the known samples (3-
BF&SI) as the unknown fault type. On the other hand, in task T3
there has a great negative transfer caused by the wrong recognition
of all unknown samples as the known fault type. This unexpected
negative transfer can be attributed to the indiscriminately match-
ing all target samples with the source data, and the outlier samples
would be aligned with the source known samples and influence
the model discriminability interactively, leading to incorrect classi-
fication of the unknown (known) samples as the known (un-
known) categories.

Based on the above discussions, the proposed three modules
could effectively improve the model performance from different
aspects. The calibrated similarity module ensures the discrimina-
tor accurately detecting the outlier data by employing the comple-
lt of V4 on gearbox tasks.

e CNN network configurations.
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mentary characteristics from entropy and confidence. The adaptive
K selection module provides the discriminator a flexible subset
based on DCS, which could accommodate different degrees of
openness scenarios during the distract stage. The weighted distri-
bution matching module avoids the unexpected negative transfer
by assigning low weights to outlier data during the attract stage.
The experimental results show that the model attached with all
modules could achieve the best performance, and the ablation of
a certain module will cause worse performance under all tasks.
5.5.2. Hyper-parameters sensitivity
In this section, the detailed ablation studies of key parameters

in proposed model are carried out to evaluate the effect on diagno-
sis accuracy and transfer robustness. Concretely, the sensitivity
analysis of key parameters is investigated from three aspects: net-
work architectures in representation learning process, weight coef-
ficients of objective function in optimizing process and hyper-
parameters in training process.

1) Detailed network architectures.

In this subsection, configurations of feature learning backbones
are analyzed to explore the effect on the final performance. Accord-
ing to the practical guide to CNN configuration [29], the filter
Fig. 15. The sensitivity analysis to the weight coefficients as;at ;ao and
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region size and the number of feature layers should be investigated
on proposed model. Specifically, the filter size and the layer num-
ber are set in range of [1 to 13], and ten experiments are performed
for each parameter combinations to reduce randomness. The aver-
aged results are shown in Fig. 14.

From the results it can be observed that the diagnosis accuracy
decreases as the filter size and the number of layers increase from
the default values. Especially, there has significant decrease when
the parameters exceed specific value (e.g., when the number of
convolutional layers exceeds 11 or the filter size exceeds 7 among
the OSDT bearing tasks). This performance degeneration could be
attributed to two aspects: 1) excessive irrelevant information
from neighboring receptive fields being fed into the extracted fea-
tures and 2) overfitting and gradient vanishing caused by too
many convolutional layers. On the other hand, the model perfor-
mance would decrease when the extracted features lose interac-
tions with neighboring pixels because of too small filter size or
when the learned representation combinations become weak
caused by the insufficient number of convolutional layers. There-
fore, the default values of network configuration are set as 3 for
the filter size and 5 for the number of layers to obtain stable clas-
sification results according to the input scale and parameters
analysis.

2) Optimization weight coefficients.
ad(a) results on the bearing tasks (b) results on the gearbox tasks.
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In this subsection, the effects of different weight coefficients in
the objective optimization functions (as;at;ao in the distract stage
and ad in the attract stage) on the final performance are investi-
gated. Results of classification accuracy on all classes are illustrated
in Fig. 15 with a wide range of as;at ;ao;ad (from 0 to 10) and ten
experiments of each task are conducted to obtain the mean value
(marked with dot) and standard deviation (marked with line).

From the results it can be found there has no significant perfor-
mance fluctuations within the range of as;at;ao; ad (0.05 to 1) and
decreases slightly only when one of weight groups is too large (set
as 10). It can be also observed dramatic performance degeneration
without the corresponding weight (set as 0), which justifies the
necessity of each designed module in the objective functions. In
summary, the model is insensitive to as;at;ao;ad as the design of
progressive learning, and weights could be set in the range of
[0.1 to 0.75] with similar scale according to the analysis results.

3) Training hyper-parameters.

In this subsection, sensitivity analysis of the initial learning rate
and the batch size in the training process is conducted, and inter-
actions between these hyper-parameters and diagnosis accuracy
Fig. 16. The sensitivity analysis to

Fig. 17. The averaged convergence time o

20
are demonstrated in Fig. 16. The initial learning rate and batch size
are selected in a wide range of [2:5� 10�5 to 1� 10�3] and [10 to
120] respectively, ten experiments of each task are conducted to
obtain averaged accuracy.

From the results it could be observed that the model suffers per-
formance decrease when learning rate is lower than 2:5� 10�5 or
higher than 5� 10�4, this fluctuation could be attributed to the fact
that 1) the model gets stuck in an undesirable local minimum with
tooa small learning rate and2) themodel jumpsover theglobalmin-
imumwith a too large learning rate and leads to divergence. On the
other hand, when learning rate is initialized in an appropriate range
as [5� 10�5 to 2:5� 10�4], the model fluctuates only in a narrow
range under the change of batch size, which is consistent across all
tasks and proves the insensitivity of proposed model to batch size.
Additionally, the averaged convergence time of the model training
process with different hyperparameters combinations are illus-
trated in Fig. 17. The proposed model is constructed and conducted
under the Windows 10 system, hardware platform with an AMD
5900X CPU and one NVIDIA GeForce RTX 3080 GPU. From Fig. 17 it
can be seen that large batch size or small learning rate would slow
down the model learning process, which could be attributed to
excessive computational burden.
the training hyper-parameters.

f proposed model on all OSDT tasks.
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According to above sensitivity analysis of training hyper-
parameters, the learning rate is initialized as 1� 10�4 and the
batch size is selected as 40 to achieve stable performance consid-
ering both diagnosis accuracy and computation efficiency.

6. Conclusions

In this paper, a theory-guided transfer learning model named as
TPTLN is proposed to tackle the open set diagnosis transfer prob-
lem (OSDT), in which the target domain has the unknown fault cat-
egory. The TPTLN model tackles the OSDT issue through the
distract stage and attract stage, in which the uncertainty calibra-
tion, adaptive openness estimation, and weighted distribution
modules are designed for better accommodating different open-
ness shifts. In the distract stage, the target unknown data are
pushed away from the known classes to avoid participating
domain alignment process, in which a robust discriminative
boundary for the outlier data could be learned through the comple-
mentary similarities and domain consensus score. In the attract
stage, data from the shared label space between the source domain
and target domain will be aligned through an adversarial learning
strategy to conduct diagnosis knowledge transfer. Furthermore,
the theoretical upper bound of each stage is analyzed and com-
bined into the optimization process, which could facilitate the
inter-class separability for the distract stage and intra-class com-
pactness for the attract stage. Various OSDT tasks based on the
bearing and gearbox are designed to evaluate the proposed
method, the experimental results demonstrate the TPTLN shows
superior performance to other representative methods in the scope
of diagnosis accuracy and transferring robustness.

In the future, a more challenging problem called as universal
domain adaptation (UDA) for the mechanical diagnosis will be
explored. In the UDA problem, both the source domain and target
domain contain the unknown fault data, which could be seen as a
more general setting for OSDT problem.
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